-continued

```
<213> ORGANISM: Diabrotica virgifera
<400> SEQUENCE: 131
ctagtggtga tatatatggt ctagttcatg ag
                                                                        32
<210> SEQ ID NO 132
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Diabrotica balteata
<400> SEQUENCE: 132
                                                                        32
aattctcatq aactaqacca tatatatcac ca
<210> SEO ID NO 133
<211> LENGTH: 32
<212> TYPE: DNA
<213 > ORGANISM: Diabrotica virgifera zeae
<400> SEQUENCE: 133
ctagttatat atggtctagt tcatgaaaac ag
                                                                        32
<210> SEQ ID NO 134
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Diabrotica balteata
<400> SEOUENCE: 134
aattotgttt toatgaacta gaccatatat aa
                                                                        32
<210> SEQ ID NO 135
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Hippodamia convergens
<400> SEQUENCE: 135
ctagtatggt ctagttcatg aaaacaccct tg
```

1-95. (canceled)

- **96**. A method for managing crop pest resistance to an agent for controlling the crop pest, comprising contacting the crop pest with a nucleic acid segment produced by a method comprising:
 - (a) obtaining a starting nucleic acid molecule substantially complementary to a target gene;
 - (b) preparing a plurality of nucleic acid segments from the starting nucleic acid molecule;
 - (c) assaying the nucleic acid segments for the ability to suppress expression of the target gene when expressed as a dsRNA in a cell comprising the target gene; and
 - (d) identifying at least a first nucleic acid segment from the plurality of nucleic acid segments that provides a desired level of suppression of the target gene when expressed as a dsRNA,

and one additional agent selected from the group consisting of a patatin, a *Bacillus thuringiensis* insecticidal protein, a *Xenorhabdus* insecticidal protein, a *Photorhabdus* insecticidal protein, a *Bacillus* laterosporus insecticidal protein, a *Bacillus sphaericus* insecticidal protein, a biocontrol agent, and an insecticide.

97. The method of claim 96, wherein the insecticide is selected from the group consisting of a carbaryl insecticide,

- fenvalerate, esfenvalerate, malathion, a carbofuran insecticide, chloropyrifos, fonophos, phorate, terbufos, permethrin, a neonicotinoid, and tefluthrin.
- **98**. The method of claim **96**, wherein the additional agent is provided as a seed treatment.
- **99.** The method of claim **96** wherein the additional agent is a *Bacillus thuringiensis* insecticidal protein.
- 100. The method of claim 99, wherein the *Bacillus thuringiensis* insecticidal protein is selected from the group consisting of a Cry1, a Cry3, a TIC851, a CryET70, a Cry2, ET29, ET37, a binary insecticidal protein CryET33 and CryET34, a binary insecticidal protein CryET80 and CryET76, a binary insecticidal protein TIC100 and TIC101, a binary insecticidal protein ET29 and TIC810, a binary insecticidal protein ET37 and TIC812, and a binary insecticidal protein PS 149B 1.
- 101. The method of claim 96, wherein the desired level of suppression is complete suppression of the target gene.
- 102. The method of claim 96, wherein the desired level of suppression is incomplete suppression of the target gene.
- 103. The method of claim 96, wherein assaying the nucleic acid segments for the ability to suppress the target gene comprises expressing the segments as a dsRNA in a cell comprising the target gene and determining the level of suppression of the target gene.